2 research outputs found

    Parameter Optimization for Image Denoising Based on Block Matching and 3D Collaborative Filtering

    Get PDF
    Clinical MRI images are generally corrupted by random noise during acquisition with blurred subtle structure features. Many denoising methods have been proposed to remove noise from corrupted images at the expense of distorted structure features. Therefore, there is always compromise between removing noise and preserving structure information for denoising methods. For a specific denoising method, it is crucial to tune it so that the best tradeoff can be obtained. In this paper, we define several cost functions to assess the quality of noise removal and that of structure information preserved in the denoised image. Strength Pareto Evolutionary Algorithm 2 (SPEA2) is utilized to simultaneously optimize the cost functions by modifying parameters associated with the denoising methods. The effectiveness of the algorithm is demonstrated by applying the proposed optimization procedure to enhance the image denoising results using block matching and 3D collaborative filtering. Experimental results show that the proposed optimization algorithm can significantly improve the performance of image denoising methods in terms of noise removal and structure information preservation

    Hybrid Committee Classifier for a Computerized Colonic Polyp Detection System

    Get PDF
    We present a hybrid committee classifier for computer-aided detection (CAD) of colonic polyps in CT colonography (CTC). The classifier involved an ensemble of support vector machines (SVM) and neural networks (NN) for classification, a progressive search algorithm for selecting a set of features used by the SVMs and a floating search algorithm for selecting features used by the NNs. A total of 102 quantitative features were calculated for each polyp candidate found by a prototype CAD system. 3 features were selected for each of 7 SVM classifiers which were then combined to form a committee of SVMs classifier. Similarly, features (numbers varied from 10-20) were selected for 11 NN classifiers which were again combined to form a NN committee classifier. Finally, a hybrid committee classifier was defined by combining the outputs of both the SVM and NN committees. The method was tested on CTC scans (supine and prone views) of 29 patients, in terms of the partial area under a free response receiving operation characteristic (FROC) curve (AUC). Our results showed that the hybrid committee classifier performed the best for the prone scans and was comparable to other classifiers for the supine scans
    corecore